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of sodium, the compound NaHg which is formed appears to be identical 
with that formed in the reduction of ordinary salts of mercury under 
corresponding conditions. 

BROWN UNIVERSITY 
PROVIDENCE;, RHODE; ISLAND 

[CONTRIBUTION PROM THE; CHEMISTRY DEPARTMENT OF BIRKBECK COIAEGE, 
UNIVERSITY OK LONDON] 

THE DETERMINATION OF SURFACE TENSION FROM THE RISE 
IN CAPILLARY TUBES 

BY SAMUEL, SUGDEN 
R-BCBIV8D JULY 21, 1924 PUBLISHED JANUARY 8, 192S 

Richards, Speyers and Carver1 in a recent paper describing a method of 
measuring surface tension by observations'of capillary rise in two connected 
tubes refer to the equations of Rayleigh2 for very narrow and very wide 
tubes and then state that "the problem presented by the intervening 
region has not as yet been solved mathematically." It is the object of 
this short paper to point out that a solution of this problem for all sizes of 
tube commonly used was given by the author three years ago.3 Richards, 
Speyers and Carver refer to this paper as giving "a somewhat similar 
empirical method;" since however, it contains the corrections referred 
to below derived from a mathematical discussion of the equation to the 
meniscus and gives new absolute determinations of the surface tension of 
benzene and water at 20° it seems necessary to reaffirm the soundness of 
the theoretical methods employed by the author. 

The chief feature of the 1921 paper is a new method of correcting the 
simple equation 

which is strictly true only for infinitely small tubes. Here y is the surface 
tension, g the gravitational constant, D the density of the liquid, d the 
density of air + vapor, r the radius of the capillary tube and h the capillary 
rise measured from a plane surface of the liquid. Of the numerous formu­
las which have been devised to correct this equation for larger values of r, 
the most precise is that of Rayleigh2 which may be put in the form 

a2 = rh (l +1 r/h - 0.1288 ^ + 0.1312 ~\ (2) 

Inspection of this formula shows from its mathematical form that it can 
only be used for a limited range and it is pointed out below that when 
r/h is greater than 0.4 the error introduced by the use of this formula in-

1 Richards, Speyers and Carver, THIS JOURNAL, 46, 1196 (1924). 
2 Rayleigh, Proc. Roy. Soc, 92A, 184 (1915). 
3 Sugden, J. CUm. Soc, 119, 1483 (1921). 
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creases rapidly. I t is possible however, by a slight modification of Equa­
tion 1 to obtain an equation which is strictly t rue for all values of r, namely, 

o2 = bk (3) 

where b is the radius of curvature a t the lowest point of the meniscus in a 
vertical tube. The quant i ty b cannot be measured directly (except for 
large bubbles or drops) bu t i t is readily seen t h a t for a very small tube b=r, 
and for a very large tube b = oo,—that is, t he surface is plane. Hence 
the problem resolves itself into t ha t of determining how r/b varies with r 
and a2 between the limits r/b = 1 for infinitely small tubes and r/b = O for 
infinitely large ones. This has been done by the present writer by using the 
tables of Bashforth and Adams.4 

The very impor tant contribution t o the mathematical theory of capil­
larity which we owe to these eminent mathematicians is frequently men­
tioned by later workers but it does 
not seem to be realized t ha t this 
monograph (now, unfortunately, out 
of print) contains a very complete 
numerical solution of one of the most 
important equations involved in sev­
eral of the methods used for meas­
uring surface tension. This is the 
equation to a surface of revolution 
about a vertical axis for a liquid in 
equilibrium under the forces of capillarity and gravity. Let A O B repre­
sent the meridional section of such a surface of which O C is the axis of revo­
lution, and let any point P on this section be defined by coordinates x and z 
with the tangent and normal a t O as axes. Let the normal a t P make an 
angle <p with the axis O C. The equation to A O B may then be writ ten 

Fig. 1. 
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b as before being the radius of curvature at O. This equation corresponds 
to two families of curves; when 0 is positive we obtain the outline of a bubble 
of air under a horizontal plate, a drop of mercury on a plane surface, or the 
meniscus in a vertical tube, while negative values of j3 correspond to the 
case of a pendent drop or of a bubble of air emerging upwards from a sub­
merged tube. In the first case, the shape of the curve depends upon the 
magnitude of /3. When /3 is small the surface approximates to a sphere as 
at A' O' B ' while large values of j3 give the outline of a large drop or bubble 

4 "An Attempt to Test the Theories of Capillary Action," Cambridge University-
Press, 1883. 
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as at A" O" B" with a large radius of curvature at 0". Equation 4 has not 
been integrated in the usual sense of the term, that is, a general relation 
between % and z in terms of elementary functions which satisfies this differ­
ential equation has not been found. It is possible, however, to obtain a 
numerical solution with any desired degree of accuracy. Bashforth and 
Adams devised special methods for dealing with this equation and have 
computed and recorded in a series of tables the values of x/b and z/b for 
every 5° variation in <p for each of a large range of values of /3. These 
ratios are given to five significant figures so that over a wide range from 
/3 = 0.125, which corresponds to water in a capillary tube of less than 1 mm. 
radius to /3 = 100 which corresponds to water in a tube nearly 9 mm. in 
radius, the outline of the meniscus is denned with a high degree of precision. 

I t should be emphasized that the numerical solutions of Equation 4 are 
obtained by rigid mathematical reasoning which does not involve any 
simplifying assumption as to the form of the whole or part of the curve. 
The mathematical argument is too lengthy to be restated here; it is sum­
marized by Bashforth and Adams5 as follows. 

"We may however, as in all cases where the differential equation to a curve is given, 
develop the increments of the coordinates in series proceeding according to ascending 
powers of the increments of the quantity chosen as the independent variable. Thus we 
can trace a small portion of the curve starting from a known point, and then we may 
make the point which terminates this portion a new starting point for tracing another 
small portion and so on successively until any desired portion of the curve has been 
traced." 

The process is therefore one of analytical extension; the general theory 
of such methods is discussed elsewhere.6 The method is limited in accuracy 
only by the number of terms of the infinite series of ascending powers of the 
increment of the dependent variable which are taken into account in the 
numerical calculations; it is, however, very laborious. Bashforth and 
Adams give full details of the methods of computation with numerical 
examples; as stated above they have worked out and tabulated a large 
number of solutions accurate to five significant figures. 

The present author's contribution has been to use Bashforth and Adams' 

r/h 

0.1 
.2 
.4 
.5 
.6 

r/a 

0.3113 
.4338 
.5974 
.6592 
.7125 

2.29 

TABLE; I 
r/b 

Sugden 

0.9689 
.9414 
.8944 
.8743 
.8562 
.3030 

r/b 
Rayleigh 

0.9688 
.9411 
.8920 
.8689 
.8460 

r in mm. for 
water at 20° 

1.2 
1.7 
2 .3 
2 .5 
2 .8 
8.9 

6 Ref. 4, p. 15. 
8 Goursat's, "Mathematical Analysis," translated by E. R. Hedrick and O. Dunkel, 

Ginn and Co., Boston, 1Q16, Vol. II, Part I. Functions of a Complex Variable, Chap. 4. 
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figures for <p = 90 ° (which corresponds to a liquid with zero contact angle 
in a vertical tube) to calculate the values of r/b required in Equation 3. It 
is readily shown that this quantity is a function only of r/a, and in the 
author's 1921 paper r/b is tabulated to four figures for the range from 
r/a = 0 to r/a — 2.29. Table I shows clearly that this enables a much 
larger range of tubes to be used for the measurement of surface tension. 

Thus Rayleigh's formula gives values which are too low by one part in 
four hundred parts when r = 2.4 mm. for water, while the author's tables 
give the corrections for tubes up to 18 mm. in diameter with an accuracy 
of one part in three thousand parts or more. There is still a gap left be­
tween r/b - 0.3030 which corresponds to the highest value of /3 used by 
Bashforth and Adams and r/b = 0.05 at which Rayleigh's formula for 
wide tubes2 may be used. Since the capillary rise in the wide tube comes 
into the calculation as a correction term, approximate values for this region 
were found by a graphical interpolation between the Bashforth and Adams 
curve and that for values calculated by the Rayleigh formula.7 

In view of the generality of the mathematical treatment adopted by 
Bashforth and Adams it appears probable that the solutions to Equation 4 
obtained by them will be of great value in dealing with many of the prob­
lems of capillary measurement. Up to the present time the only workers 
who have used these tables appear to be Stockle8 for the measurement of the 
surface tension of mercury and the present writer in discussing the theory 
of the method of capillary rise and that of the method of maximum bubble 
pressure.9 

Summary 

The mathematical work of Bashforth and Adams on the solution of the 
equation to a liquid surface of revolution about a vertical axis in equilib­
rium under the action of gravity and surface tension forces is described, 
and its significance in connection with methods of measuring surface ten-

7 The error introduced by the use of approximate corrections in this intermediate 
region is very small. Bashforth and Adams' tables end at |3 = 100, which corresponds 
to r/a = 2.29, r/b = 0.303. Rayleigh gives a formula for wide tubes which he does not 
regard as valid when r/a is less than 5; when, however, we use it for r/a = 2.29 we find 
r/b = 0.288, about 5% lower than the true value. On the other hand the simple empir­
ical formula, r/b = 3.0e~r/a, coincides with Rayleigh's formula when r/a is greater than 
4.5 and gives r/b = 0.304 when r/a = 2.29. The prolongation of the curve obtained by 
plotting r/b against r/a must lie at its lower extremity between these two converging 
curves and can be obtained by graphical methods with an error which is probably less 
than 1%. Since in most instruments the capillary rise in the wide tube is small com­
pared with that in the narrow tube the resultant error in the surface tension is very small. 
For water at 20° in Coombs' apparatus V [THIS JOURNAL, 43, 834 (1921)] for which 
n = 0.3798 mm. and rt = 9.32 mm., an error of 1% in calculating r/b for the wide tube 
introduces an uncertainty of 1 part in 8500 parts in the calculated surface tension. 

s Stockle, Wied. Ann., 66, 499 (1898). 
8 J. Chetn. -Soc, 121, 860 (1922). 
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sion discussed with special reference to the author's modification of the 
method of capillary rise. 
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The experiments described in this article were undertaken with a view 
to determine the applicability of a calorimetric titration to the analysis of 
chlorides and mixtures of cyanide and halides. The apparatus used and 
the methods of procedure were similar in most respects to those employed 
by Dean and Watts2 in the calorimetric determination of sulfur, except 
for the following modification: tap water at approximately 12.5° was made 
to flow through the glass jacket surrounding the buret. The solutions to 
be titrated were cooled to a temperature slightly below that of the stand­
ard solution. When this procedure was followed, more uniform results 
were obtained than when the titrations were carried out at room tem­
perature without the water-jacketed buret. 

Standardization of Silver Nitrate Solution 
An approximately 0.5 N solution of silver nitrate was titrated calorimetrically 

against weighed portions of carefully purified samples of potassium chloride. 

Determination of Chlorine in Soluble Chlorides 

Six samples of mixtures containing soluble chlorides were titrated using 
the standard silver nitrate solution. The results of these titrations are 
given in Table I. 

TABLE I 

DETERMINATION OF CHLORIDE WITH STANDARD SILVER NITRATE SOLUTION 

Sample 

1 
2 
3 
4 
5 
6 

20.36 
34.51 
22.97 
25.13 
20.24 
39.95 

Calorimetrically 

20.07. 
34.32 
22.76 
25.35 
20.40 
40.36 

20.34 
34.42 

24.97 
20.13 
40.30 

Gravimetrically 

20.31 
34.74 
23.04 
25.30 
20.31 
39.95 

1 Adapted from a thesis submitted by Evelyn Newcomer in partial fulfilment of the 
requirements for the degree of Master of Science in Chemistry at the University of 
Colorado. 

2 Dean and Watts, T H I S JOURNAL, 46, 854 (1924). 


